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In this white paper, we describe the R package gpuideal. This software package estimates
two-parameter item response models, often used in political science to calculate legislator
ideal points based on roll call vote matrices (see Clinton, Jackman, and Rivers, 2004). The
software is much faster than existing fully Bayesian approaches (Jackman, 2017) but unlike
alternative estimation approaches such as Expectation Maximization (Imai, Lo, and Olmsted,
2016) it still provides draws from the full posterior of the model. This is essential for
estimating quantities such as polarization, where naive estimates based on maximum or
expected a posteriori estimates can be highly misleading (Hill and Tausanovitch, 2015). The
software relies on the fact that the estimation procedure used by Jackman (2017) is highly
parallelizable and can take advantage of the wide availability of graphics processing units.
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1 Introduction

gpuideal is an R (R Core Team, 2018) package for fast, fully Bayesian estimation of ideal

points. It is meant to improve upon the functionality of existing software such as ideal

(Jackman, 2017) or MCMCirtKd (Martin, Quinn, and Park, 2011), although for the time

being it only estimates one-dimensional models. In the following white paper we describe the

model and algorithm underlying gpuideal, as well as how it is implemented. We compare its

performance to existing alternatives. gpuideal is many times faster than other options, save

for emIRT. However unlike gpuideal, emIRT does not produce posterior distributions for

the model’s parameters and other statistics of interest.

2 The Model

Take the standard one-dimensional binary item response model with normal shocks (see

Clinton, Jackman, and Rivers, 2004) which yields the following choice probabilities:

Pr(yij = 1) = Pr(x̃i.β̃.j + εij > 0) = Φ(x̃i.β̃.j) and

Pr(yij = 0) = Pr(x̃i.β̃.j + εij ≤ 0) = 1− Φ(x̃i.β̃.j)

(1)

for i = {1, . . . , N} and j = {1, . . . ,M} where x̃ = (1, x) is an N × 2 matrix consisting of a

vector of ones and a vector x of the N person ideal points and x̃i. is the row vector (1, xi)

containing the ith row of x. We will refer to these people as“legislators” following the roll call

voting literature, but the model can be applied to many types of units and binary outcomes.

β̃ is a 2 ×M matrix of parameters such that β̃> = [α β], α and β are column vectors of

length M , and β̃.j is a column vector containing the jth column of β̃. These parameters

characterize each of the M outcomes, which we refer to as “roll calls.” ε is an N ×M matrix

of independently and identically distributed standard normal random shocks. y is the N×M

data matrix, where rows correspond to legislators and columns correspond to roll calls. Each
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entry in y is coded 1 for a vote in favor and 0 for a vote against. The function Pr assigns

probability and Φ is the standard normal CDF.

3 The Algorithm

Following Jackman (2009, p. 456), we estimate the model using the data augmentation

approach presented by Albert and Chib (1993). Let y∗ be an N × M matrix of latent

propensities for each legislator to vote in favor of each bill, such that

y∗ = x̃β̃ + ε. (2)

Take some set of starting values for x, and call these x(0), denoting the full matrix x̃(0) =

(1, x(0)). In addition, generate starting values for the item parameters, β̃(0)> = [α(0) β(0)].

This can be done simply by sampling from the prior distributions, but a better approach is

to find reasonable values using a fast approximation such as factor analysis or emIRT.

Starting values for y∗ can be drawn directly from Equation 2 subject to the restriction

that y
∗(0)
ij > 0 for yij = 1 and y

∗(0)
ij ≤ 0 for yij = 0:

y
∗(0)
ij ∼ N(x̃

(0)
i. β̃

(0)
.j , 1) left truncated at 0 for yij = 1 and

y
∗(0)
ij ∼ N(x̃

(0)
i. β̃

(0)
.j , 1) right truncated at 0 for yij = 0

(3)

where i ∈ {1, . . . , N} indexes legislators and j ∈ {1, . . . ,M} indexes roll calls.

In each iteration t of the algorithm, we draw x(t) conditional on β̃(t−1) and y∗(t−1). We

then draw β̃(t) conditional on y∗(t−1) and x(t). Finally we draw y∗(t) conditional on x(t) and

β̃(t). This cycle is repeated until we achieve convergence for the posterior densities of the

parameters.

Observe that Equation 2 resembles a regression model, but y∗ is a matrix, not a vector.

In order to draw values of x(t) we observe that x̃β̃ = α̃ + xβ> where α̃ is an N ×M matrix
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where every column is equal to α. Rearranging:

y∗(t−1) − α̃(t−1) = x(t)β(t−1)> + ε. (4)

Consider the ith row of y∗:

(y
∗(t−1)
i. − α̃(t−1)

i. )> = x
(t)
i β

(t−1) + εi.. (5)

This has the familiar linear regression form with (y
∗(t−1)
i. − α̃(t−1)

i. )> being regressed on β(t−1)

where x
(t)
i is the coefficient and the intercept is suppressed. If we give xi a normal prior

with mean 0 and variance σx, normal-normal conjugacy allows us to draw then from the

(conditional) posterior of x
(t)
i as follows:

x
(t)
i ∼ N((β(t−1)>β(t−1) + σ−1x )−1β(t−1)>(y

∗(t−1)
i. − α(t−1)

i. ), (β(t−1)>β(t−1) + σ−1x )−1). (6)

This is simply the posterior of x
(t)
i from the Bayesian regression in Equation 5.

Likewise, we can draw β̃j
(t)

by considering the regression of y
∗(t−1)
.j on x(t) for each column

j. If we give β̃ a multivariate normal prior distribution with mean µβ̃ and variance Σβ̃, we

can draw β̃(t) as follows:

β̃j
(t) ∼ N((x̃(t)>x̃(t) + Σ−1

β̃
)−1(x̃(t)>y

∗(t−1)
.j + Σ−1

β̃
µβ̃), (x̃(t)>x̃(t) + Σ−1

β̃
)−1). (7)

Finally, as in Equation 3, we draw yij∗(t) conditional on x
(t)
i. and β̃

(t)
.j :

y
∗(t)
ij ∼ N(x̃

(t)
i. β̃

(t)
.j , 1) left truncated at 0 for yij = 1 and

y
∗(t)
ij ∼ N(x̃

(t)
i. β̃

(t)
.j , 1) right truncated at 0 for yij = 0.

(8)
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In cases in which not every legislator votes on every roll call, at each update step, the rows

or columns associated with any missing yij are simply excluded from the calculation, as in

list-wise deletion. For the x step, each xi is updated using only the rows of β̃ that correspond

to non-missing yij. Likewise, each βi and αi is updating using only the xs that correspond

to non-missing yij. Finally, y∗ij is only updated if the corresponding yij is non-missing.

Like existing approaches, this algorithm “augments” the data with a latent variable, y∗

allowing Gibbs sampling from easy-to-sample-from normal and truncated normal distribu-

tions. A key feature of the estimation problem for our purposes is that the draws of x
(t)
i are

all independent of one another for all i, as are the draws of β̃
(t)
j for all j and y

∗(t)
ij for all i

and j, conditioning on the other parameters.

4 Parallelization

When a problem can be easily separated into many processes with no need for communica-

tion between them, this is what the parallel computing community calls an “embarrassingly

parallel” problem (Herlihy and Shavit, 2011, p. 14). Each of the three steps in the data

augmentation algorithm for this model is embarrassingly parallel. The datasets that this

model is applied to are often quite large in N , M or both, with an increasing need for speed

as the problem grows larger1. For large datasets, raw processing speed is of little advantage

compared to the advantage that can be gained by adding additional processors. For this

reason, this problem is an ideal application for graphical processing units.

Whereas computer processing units (CPUs) are meant for fast execution of serialized

processes, graphical processing units (GPUs) are sets of many slower processors tailored for

processes with high returns to parallelization. 3-dimensional graphics are the paradigmatic

example, hence the name. A typical consumer graphics card has hundreds of cores, and

cards designed for scientific computing can have thousands. Executing our algorithm requires

1Imai, Lo, and Olmsted (2016) identify 16 recent high-profile applications in political science across different
substantive area, often using millions of individuals and thousands of choices.
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transferring data to and from memory after each operation, which adds overhead and costs

processing time. However to get a sense of the potential for higher performance, consider a

problem where N=M and a GPU with N cores. If there were no overhead, the speed of each

step could be improved by a factor of N, for an N times overall speed improvement over a

single core. GPUs are typically much slower than CPUs, but as N grows large this difference

becomes immaterial compared to the gains from parallelization.

We implement the parallelization of this algorithm using NVIDIA’s proprietary CUDA

platform. As a result it is currently necessary to have an NVIDIA graphics card in order to

use gpuideal.

5 Speed

Any test of this software will be hardware dependent. For this test we used an NVIDIA

GeForce GTX 550 Ti graphics card with 192 cores and an Intel Xeon E5-2620 processor.

At the time that they were purchased, in October of 2012, this was a middle-of-the-road

graphics card costing $124 and a server-grade CPU processor costing $423. All tests that do

not involve GPUs are single-threaded for comparability, despite the fact that the CPU has

6 cores. emIRT allows for parallelization of the bootstrap trials on multi-core CPUs, which

could lead to significant performance improvements.

Following Imai, Lo, and Olmsted (2016), we test the speed of the software using roll call

voting data from the 102nd through the 112th House of Representatives. We drop legislators

who voted on fewer than 25 non-unanimous bills, as they do. We also follow their procedures

in terms of the number of iterations and convergence criteria to be used for each estimation

method. For our MCMC-based method we run and 120,000 iterations and discard the first

20,000. For emIRT we use the default setting of requiring each iteration to be correlated

with the previous iteration at 1−10−6 for convergence. For the bootstrapped version we run

100 bootstrap replicates.
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Figure 1: Speed comparison of software for estimating ideal points.

Figure 1 shows the test results, closely mirroring the left panel of Figure 1 from Imai, Lo,

and Olmsted (2016). The y-axis shows the time elapsed for each analysis on the log scale,

with some points of reference labelled. Each point on the x-axis is a session of the House of

Representatives, and estimates are based on roll call voting data for that session. There is

some variation in the number of bills in each session, leading to some variation in estimation

time.

emIRT is by far the fastest method in terms of performance, often running in almost

as little as 5 seconds. However if any inference is to be performed, the bootstrap version

is necessary. Without any parallelization, this scales roughly linearly, with at least 500

seconds needed for 100 bootstrap replicates. gpuideal is slightly faster in every case. It is

dramatically faster than ideal, which typically takes several hours, while retaining all of the

advantages in terms of inference.
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6 Accuracy

Each of these models is practically identical in terms of the estimates produced, with one

caveat. Expectation Maximization is meant to produce the maximum likelihood estimate,

which is analogous to the posterior mode or Maximum A Posteriori (MAP) in a Bayesian

setting. In contrast, many Bayesian analyses report the Expected A Posteriori (EAP), which

is the posterior mean. Ideal point estimation can produce very skewed posterior distributions

when the informativeness of the items varies substantially across the latent space. This

means that is some cases the MAP and the EAP can be substantially different. In such

cases a simple standard error will not capture the nature of the uncertainty in the posterior

distribution.

Figure 2 compares the estimates produced by each method for the 112th House of Rep-

resentatives. In every case, the results produced by each method are very highly correlated

with the results produced by the others. The correlation between the results of ideal and

gpuideal is 0.999995, reflected in the almost perfect line in the leftmost panel of the Figure.

The estimates produced by emIRT are also very highly correlated with ideal, but behind

the .995 correlation there are perhaps a half dozen legislators whose MAP and EAPs are

substantially different. The same is true of the comparison between emIRT and gpuideal.

Other sessions of Congress produce very similar results.
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Figure 2: Comparison of ideal point estimates produced by ideal, emIRT and gpuideal.

7 Implementation

gpuideal is easily installed and run as a library in the R programming language. It is avail-

able for download at https://github.com/JeffreyBLewis/gpuideal and can be installed

using the install_github function from the devtools package as shown in the example be-

low. As noted earlier, gpuideal requires an NVIDIA graphics card. For researchers who do

not have access to one, a simple solution is use Amazon’s EC2 service to rent a GPU-enabled

server instance. For step-by-step instructions, see the gpuideal README file.

The following code snippet demonstrates how to run gpuideal on the 112th House of

Representatives and summarize the results:

1 # Install package

2 devtools :: install_github("jeffreyblewis/gpuideal")

3

4 # load libraries

5 library(gpuideal)

6 library(pscl)

7

8 # read in the 112th congress

9 data <- readKH("https://voteview.com/static/data/out/votes/H112_votes.ord")

10

11 # run gpuideal

12 results <- gpuideal(data ,thin=10, samples =120000)

8



13

14 # post process using party to establish direction

15 rescaled_results <- rescaleIdeal(results ,dir=data$legis.data$partyCode)

16

17 # summarize the results

18 results_summary <- summary(rescaled_results)

19

20 # histogram of the estimated ideal points

21 hist(results_summary$statistics [1: data$n,1])

22

23 # histogram of the posterior distribution of Paul Ryan ’s ideal point

24 hist(rescaled_results [20000:120000 ,438])
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